1 The graph shows the oxygen uptake for an athlete when walking and running.

(a) Compare the oxygen uptake when the athlete is walking and running at speeds from 6 to 10 km per hour.

(3)

(b)	(i)	Complete the word equation for aerobic respiration.	
		oxygen + glucose — +	(1)
	(ii)	Explain why oxygen uptake increases as an athlete runs at faster speeds.	(2)
	•••••		
	•••••		
	(iii)	When athletes train hard they can respire anaerobically.	
		Which of the following statements about anaerobic respiration are true?	
		1. Lactic acid and carbon dioxide are produced.	
		2. Lactic acid can build up causing cramp.	
		Put a cross (☒) in the box next to your answer.	(-)
		A statement 1 only	(1)
	X	A statement 1 only	
	X	B statement 2 only	
	X	C both statement 1 and 2	
	X	D neither statement 1 nor 2.	

(c) The heart rate and stroke volume of an athlete training at a high intensity were measured and their cardiac output was calculated.

(i) Calculate the heart rate after 4 weeks of training.

The table shows the measurements before, after 2 weeks and after 4 weeks of training.

	heart rate / beats per minute	stroke volume / dm³	cardiac output / dm³ per minute
Before training	142	0.08	11.4
After 2 weeks training	164	0.10	16.4
After 4 weeks training		0.12	24.0

	(Total for Question 1 = 11 marks)
	(2)
rate of aerobic respiration.	(2)
(ii) Explain how the higher cardiac output after 4 v	
	beats per mii

- 2 In an investigation, a person ran at different speeds.
 - (a) The graph shows the concentration of lactic acid in the blood and the heart rate of this person while running.

(i) When the running speed is 22 km h⁻¹, the stroke volume of the runner is 0.18 dm³. Calculate the cardiac output of the runner using the equation.

cardiac output = stroke volume
$$\times$$
 heart rate (2)

(ii)	Co	implete the sentence by putting a cross (\boxtimes) in the box next to your answer.	
		hen the heart rate is at its maximum the concentration of lactic acid in the bood is	
			(1)
X	Α	11.2 mmol dm ⁻³	
X	В	12.8 mmol dm ⁻³	
X	C	200.0 mmol dm ⁻³	
X	D	210.0 mmol dm ⁻³	
(iii)	Со	mplete the sentence by putting a cross (⊠) in the box next to your answer.	(1)
	Th	e graph shows that	
X	A	as the heart rate increases the concentration of lactic acid increases	
X	В	as the concentration of lactic acid increases the heart rate decreases	
X	C	the concentration of lactic acid increases as running speed increases	
X	D	the concentration of lactic acid is not dependent on heart rate	
(iv)		plain why the concentration of lactic acid changes at running speeds eater than 18 km h^{-1} .	
	giv	cutch than 10 kmm.	(3)

(b) After running the person rested.	
Explain why the concentration of lactic acid in the blood changes whilst resting	. (3)
(Total for Question 2 = 10 n	narks)

3 Figure 11 shows the equipment used for measuring respiration in peas.

(Source: Martin Shields/Science Photo Library)

Figure 11

- Respirometer A contains germinating peas.
- Respirometer B contains peas that are not germinating.
- Respirometer C contains glass beads.

All three respirometers are placed in a water bath at 25 °C for 30 minutes. The reduction in oxygen levels in each respirometer is measured using a data logger.

(a) Explain why the respirometers are placed in a water bath at 25 °C.	(2)

30	-minute period.				
Th	e results are sho	wn below.			
Α	10 mins (-0.8)	ml, 20 mins (-1.6) ml, 30	mins (–2.4) ml		
В	10 mins (-0.1)	ml, 20 mins (-0.1) ml, 30	mins (-0.1) ml		
C	No change				
(i)	Complete the t	table for these results.			
				(2)	
(ii)	Calculate the ra	ate of oxygen consumption	on per second for the resi	ılts in	
(,	respirometer A		on per second for the res		
				(2)	
				m	l/second

(b) A student recorded the change in oxygen levels in the germinating peas over a

(iii) Explain why respirometer A has the highest rate of oxygen consumption.	
	(2)
c) Some respirometers read the movement of a bubble along capillary tubing.	
Carbon dioxide can affect the measuring of oxygen used in this type of	
respirometer.	
State a chemical that could be placed in the respirometer that would stop carbon	
dioxide affecting the experiment.	(1)
	(1)
(Total for Question 3 = 9 ma	rKS)